Thursday 23 February 2012

"Waterworld" planet discovered orbiting red dwarf star

GJ1214b, shown in this artist's view, is a super-Earth orbiting a red dwarf star 40 light-years from Earth. New observations from the NASA/ESA Hubble Space Telescope show that it is a waterworld enshrouded by a thick, steamy atmosphere. GJ 1214b represents a new type of planet, like nothing seen in the Solar System or any other planetary system currently known. (Image credit: NASA, ESA, and D. Aguilar (Harvard-Smithsonian Center for Astrophysics))

When I consider thy heavens, the work of thy fingers, the moon and the stars, which thou hast ordained;
What is man, that thou art mindful of him? and the son of man, that thou visitest him?
Psalms 8:3-4

The heavens declare the glory of God; and the firmament showeth his handiwork. Psalms 19:1

Thou art worthy, O Lord, to receive glory and honour and power: for thou hast created all things, and for thy pleasure they are and were created. Revelation 4:11

As reported by Space Daily, February 22, 2012:

Observations by the NASA/ESA Hubble Space Telescope have come up with a new class of planet, a waterworld enshrouded by a thick, steamy atmosphere. It's smaller than Uranus but larger than Earth.

An international team of astronomers led by Zachory Berta of the Harvard-Smithsonian Center for Astrophysics (CfA) made the observations of the planet GJ 1214b.

"GJ 1214b is like no planet we know of," Berta said. "A huge fraction of its mass is made up of water."

The ground-based MEarth Project, led by CfA's David Charbonneau, discovered GJ 1214b in 2009. This super-Earth is about 2.7 times Earth's diameter and weighs almost seven times as much. It orbits a red-dwarf star every 38 hours at a distance of 2 million kilometres, giving it an estimated temperature of 230 degrees Celsius.

In 2010, CfA scientist Jacob Bean and colleagues reported that they had measured the atmosphere of GJ 1214b, finding it likely that it was composed mainly of water. However, their observations could also be explained by the presence of a planet-enshrouding haze in GJ 1214b's atmosphere...

..."The Hubble measurements really tip the balance in favour of a steamy atmosphere," Berta said.

Since the planet's mass and size are known, astronomers can calculate the density, of only about 2 grams per cubic centimetre. Water has a density of 1 gram per cubic centimetre, while Earth's average density is 5.5 grams per cubic centimetre. This suggests that GJ 1214b has much more water than Earth does, and much less rock.

As a result, the internal structure of GJ 1214b would be extraordinarily different from that of our world.

"The high temperatures and high pressures would form exotic materials like 'hot ice' or 'superfluid water', substances that are completely alien to our everyday experience," Berta said.

Theorists expect that GJ 1214b formed further out from its star, where water ice was plentiful, and migrated inward early in the system's history. In the process, it would have passed through the star's habitable zone, where surface temperatures would be similar to Earth's. How long it lingered there is unknown.

GJ 1214b is located in the constellation of Ophiuchus (The Serpent Bearer), and just 40 light-years from Earth. Therefore, it's a prime candidate for study by the NASA/ESA/CSA James Webb Space Telescope, planned for launch later this decade.

No comments:

Post a Comment